
JOURNAL OF AIRCRAFT

Vol. 39, No. 3, May–June 2002

Designing Compact Feedforward Neural Models
with Small Training Data Sets

Roxana M. Greenman¤

Lawrence Livermore National Laboratory, Livermore, California 94551
Slawomir W. Stepniewski†

SONY Electronics, San Jose, California 95134
and

Charles C. Jorgensen‡ and Karlin R. Roth§

NASA Ames Research Center, Moffett Field, California 94035

A new hybrid method is presented for designing feedforward, backpropagationneural models with small train-
ing data sets. The method minimizes the generalization error, a fundamental quantity that characterizes the
effectiveness of the regression models. It combines into one framework a bootstrap technique that estimates net-
work generalization performance and a collection of stochastic and deterministic optimization techniques that
adjust neural network interconnection geometry. The approach is derived as a form of multi-objective optimiza-
tion strategy. This allows for more direct treatment of contradictory design criteria than traditionally employed
single-objective techniques. A stochastic optimizationmethod such as a genetic algorithmis used to select activation
functions for hidden-layer nodes, whereas fast deterministic techniques, optimal brain surgeon and singular value
decomposition, are used to perform connection and node pruning. The method is demonstrated by optimizing
neural networks that model the high-lift aerodynamics of a multi-element airfoil. The neural model is constructed
using a small computational data set consisting of 227 data points. In the numerical experiments presented, the
solutions produced by this hybrid approach exhibit an improvement in the generalization ability on the average of
� ve to six times when compared to the pruned models with only one type of activation function. When traditional
fully connected networks with hyperbolic tangent activation functions are considered, the improvement in the
generalization performance of the new models is even greater. The neural models exhibit superior generalization
qualities that are virtually impossible to � nd by manual trial-and-error approaches.

Introduction

F EEDFORWARD, backpropagation neural networks are well
known for their robust classi� cation and approximation capa-

bilities.Although they can be employed in a variety of applications,
it is especiallyadvantageousto utilize them in problems with intrin-
sically small and/or noisy data. The parametersor weights of neural
networks can be adjusted of� ine by an array of well-understood
� rst- or second-orderoptimizationalgorithms using training exem-
plars acquired beforehand.1 A somewhat more complicated issue is
how to choose the optimal neural topology for a given problem. In
real-world scenarios, this question cannot be answered by a sim-
ple mathematical formula but through extensive experimental test-
ing and/or utilization of sophisticated optimization techniques that
attempt to discover the best performing networks.

Construction of accurate neural models that generalize well is
neither a fast nor a trivial task. This observation is especially valid
for problems where traditional regression models were utilized, re-
vised, and carefully tuned for many years. Simple replacement of
those models with standard feedforwardarchitectureequippedwith

Presented as Paper 00-1970 at the AIAA 38th Aerospace Sciences Meet-
ing and Exhibit; received 20November 1999; revision received 20 July 2000;
accepted for publication 17 January 2002. Copyright c° 2002 by the Amer-
ican Institute of Aeronautics and Astronautics, Inc. No copyright is asserted
in the United States under Title 17, U.S. Code. The U.S. Government has a
royalty-free license to exercise all rights under the copyright claimed herein
for Governmental purposes. All other rights are reserved by the copyright
owner. Copies of this paper may be made for personal or internal use, on
condition that the copier pay the $10.00per-copy fee to the CopyrightClear-
ance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the
code 0021-8669/02 $10.00 in correspondence with the CCC.

¤Aerospace Engineer,New TechnologiesEngineeringDepartment. Senior
Member AIAA.

†Staff Engineer System LSI Design, Semi-Conductor Design Center.
‡Chief Scientist, Neuro-Engineering.
§Chief, Aerospace Operations Modeling. Associate Fellow AIAA.

one or two hidden layers and suf� cient nonlinear units may lead to
unsatisfactoryresults. The reason for this is that the neural network
models are not expected to perform nearly as well as the existing
solutions.To be considered a serious alternative in industrial appli-
cations, they have to function signi� cantly better. Otherwise, there
is no justi� cation for undertaking technological and � nancial risks
associated with implementing alternative modeling techniques.

A typical requirementin functionapproximationtasks is to obtain
a mathematical description of the relationship between regressors
with a deviation from the actual observations not exceeding a cer-
tain threshold and the model response surface being maximally � at
between training points. When an actual distribution of the input
vectors is encompassed, this requirement may be speci� ed more
formally, in terms of generalizationerror, that is, an expected error
of a given model for new, unseen inputs. Generalizationerror quan-
ti� es the effectiveness of the regression models, and as such, this
value can be used to discriminate between various neural networks.

Because feedforward neural networks are nonlinear, complex
mathematical models, their � ne tuning can seldom be performed
manually. An automatic approach to the structural optimization of
neural networks is important because such a techniquecan ease and
shorten the design process. In addition, in some situations, ensem-
bles or mixtures of several well-� tted neural networks can to be
utilized to further increase approximation accuracy over a given in-
put domain. Automatic proceduresare well suited for rapid creation
of such models.

The ensemble should be built from the models that are accurate
but different, that is, they have minimally correlated errors. It is in-
teresting that a generalizationperformanceestimatorcan be utilized
not only in the search for the best neural networks but also to bind
together several models. A weighted average of responses

yensemble D
PR

i D 1
Qµ.xi /

¯
E G

iPR
i D 1 E G

i

(1)

452

GREENMAN ET AL. 453

combines expertise of individual networks. In Eq. (1), Qµ .xi / is the
networkresponse,E G

i is an estimateof thegeneralizationerrorof the
i th neural network, and R is the number of models in the ensemble.

Problem Statement and Training Set Generation
Feedforward neural networks are used to model high-lift aerody-

namics of a multi-element airfoil. An example of the three-element
airfoil is shown in Fig. 1a. This multi-element airfoil was used in
studies conducted by Greenman2 and Greenman and Roth3;4 to op-
timize the high-lift performance.The high-lift system of an aircraft
is a crucial part of design because it in� uences takeoff and landing
performance. The importance of a well-designed high-lift system
is seen with increased payloads, which also increase operational
� exibility by extending ranges and by decreasing takeoff and land-
ing distances. Traditionally, high-lift designs have been produced
by extensive wind-tunnel and � ight programs, which are expensive
and dif� cult due to the large design space. Recently, computational
� uid dynamics (CFD) has been incorporatedin high-lift design. For
high-lift applications,CFD can also be expensivebecause the entire
design space is large, grids must be generated around geometri-
cally complicated high-lift devices, and complex phenomena must
be resolved. To achieve optimum, rapid designs, neural networks
are investigated as a tool for fast and ef� cient analysis of high-lift
con� gurations.

The neural network models used � ap riggings, that is, � ap de-
� ections, overlap, and gap (Fig. 1b), and angles of attack as inputs
(four variables) and the lift coef� cient as output. The training set
is generated using a two-dimensional, incompressible Navier–
Stokes solver. The entire training data set consists of 227 input/
output pairs. Such a small data set is fairly typical in aerospace
problems; generation of larger sets is often an expensive and time-
consuming process. In some instances, it is virtually impossible to
reproduce previous experiments to add more data as required.

Availability of a limited number of samples creates certain com-
plications in computing and validatingneural network models. The
entiresetof datapointscannotbe simplydividedinto the trainingand
testingsubsetsbecausethis can severelyunderminethe performance
of the neural network. Moreover, when only a small data subset is
used for model veri� cation, a large optimistic bias in estimation is
likely to occur. Another important issue is how to split the available
data so the underlying distribution will not be seriously corrupted.
Because of the small number of samples, all available data have to
be utilized in the primary task of neural network training. The lack
of an explicit veri� cation set can be compensated to a certain extent
by employingmore sophisticatedstatisticaltechniquessuch as cross
validation or bootstrapping (see “Generalization Error” section).

The geometry studiedwas a three-elementairfoil, whose sections
consist of a 12%c LB-546 slat5 NACA 632-215 Mod B main ele-

a) Airfoil

b) De� nition of � ap rigging parameters

c) De� nition of slat rigging parameters

Fig. 1 Three-element airfoil.

Fig. 2 Grid around three-element airfoil (every other point shown for
clarity).

ment and a 30%c Fowler � ap, where c is the chord of the cruise
wing. The slat has a de� ection of ±s D 6:0 deg, gaps D 2:0%c,
and overlap of ols D ¡0:05%c (Fig. 1c). For the computational
database, 51 different � ap riggings are created for each slat de-
� ection. The � ap riggings are combinations of the � ap de� ection,
gap, and overlap, which are de� ned in Fig. 1b. The � ap de� ec-
tion angle’s range is 25:0 · ± f · 38:5 deg. The gap setting’s range
is 1.5%c · gap f · 2:7%c, whereas the overlap setting’s range is
0:4%c · ol f · 1:5%c. All gap and overlap values are expressed in
terms of percent chord.

The grids around the three-elementairfoil are generatedby using
OVERMAGG,6 which is an automated script system used to per-
form overset multi-element airfoil grid generation. The rule-based
high-lift grid generationtechniquescontainedwithin OVERMAGG
have evolved from the high-lift CFD applications by Rogers.7

OVERMAGG takes as input the surface de� nition of the individual
elements of the airfoil. It then createsa surfacegrid for each individ-
ual element by generating and redistributing points from the given
surface de� nition. It calls the HYPGEN code8 to generate volume
grids about each element.OVERMAGG also automaticallycalls the
PEGSUS code9 to unite the individual meshes into an overset grid
system, which is the � nal output of OVERMAGG.

Figure 2 shows the grid system. A total of 121,154 grid points is
used, consistingof a 242£ 81 C grid around the slat, a 451 £ 131 C
grid around the main element, and a 351 £ 121 embedded grid
around the � ap, which is used to help resolve the merging wake
in this region. The normal wall spacing for all grids is 5 £ 10¡6

chords, and Rec D 3:7 £ 106 . Grid density studies, documented in
Ref. 2, show that this system adequately captures the � ow.

To generatethe necessarycomputationaltrainingdata, each high-
lift con� gurationis analyzedat differentanglesof attackin the range
0:0 · ® · 12:0 deg. The incompressible Navier–Stokes equations
in two-dimensional generalized coordinates are solved using the
INS2D-UP10;11 � ow solver. This code has been used extensively
to predict multi-element airfoil � ow.2;5 The equations are solved
using a generalized minimum residual implicit scheme. Because
the � ow is turbulent, the Spalart–Allmaras turbulence model12 is
used. This turbulencemodel has been successfullyused to compute
high-lift � ow� elds.5;13 The � ow was treated as fully turbulent for
all elements in the computations. An empirically based criterion14

designated the pressure difference rule, was applied to the training
set because numerical inaccuracies for the computational method
were identi� ed near maximum lift. (For speci� c details, refer to
Refs. 2–4.)

Optimization Framework
The procedureof tuning a neural network architecture is an opti-

mization problemthat typically involves multiple criteria.The most
common requirement is that the network should accurately repro-
duce the training data. Also, it is important that the model should

454 GREENMAN ET AL.

generate adequate approximations for the input vectors that were
not directly included in the training set. (The new input stimuli are
assumed to be drawn from the same distributionas the learning set.)
Moreover, the network is expected to have a compact architecture
expressed, for example, in terms of the number of weights, hidden
nodes, and/or input sensors. Smaller networks are important from
the aesthetic as well as the economic point of view. (Complex so-
lutions are often more expensive.) Structurally optimized networks
are also less prone to learning spurious corrections present in the
data, a feature that is particularly important in adaptive systems, in
online learning, and in situations when the number of training data
is small.

At least three major optimization objectives are considered, ei-
ther explicitly or implicitly, in designing neural network models:
training error, generalization performance, and network size or in-
terconnection complexity. In many cases, the just iterated criteria
are contradictory: Larger networks with more adjustable parame-
ters are easier to train, but this occurs at the expense of general-
ization. Networks with inadequately small structure also exhibit
deteriorated generalization performance. A well-documented re-
lationship between generalization and training error suggests that
excessive training may not bene� t generalization.Commonly em-
ployed approachesdevelopedfor designingfeedforward neuralnet-
works convert multicriteria optimization problems into the scalar
minimization. This is the simplest solution to multi-objectiveprob-
lems.By the additionof two ormore appropriatelyscaledobjectives,
a vector optimization is converted to the scalar (parametric) opti-
mization task. If E1.w/ and E2.w/ denote training accuracy and
network complexity measure, respectively, then

min
w

8.w/; 8.w/ D .1 ¡ ®/E1.w/ C ®E2.w/ (2)

where w is a vector of all network weights and biases. The cost
function 8.w/ may be extended by adding additional components
such that ®i ¸ 0 and

P
i ®i D 1.

For example, in Ref. 15, a differentiable estimation of general-
ization error is investigated.

Usually the L2 norm or mean square error is used as a measure
of learning accuracy E1.w/. This is done under the assumption of
normal distributionof noise present in the trainingdata. A complex-
ity measure such as weight decay [Eq. (3a)] or weight elimination
[Eq. (3b)] can be used in conjunction with E1.w/, that is,

E2.w/ D
X

i

w2
i (3a)

E2.w/ D
X

i

w2
i

¯ C w2
i

(3b)

where ¯ > 0 is a user-adjustableparameter.AlthoughEqs. (3)do not
express the model size directly because a number of active weights
E2.w/ becomes smaller as wi ! 0. Moreover, the function has the
very desirable feature of being differentiablein respect to vector w.
This allows a wider range of ef� cient, gradient-based optimiza-
tion methods to be applicable in searching for the optimal weight
settings.

A disadvantage of the parametric approach is that ®i provides
rather limited control of the relative ratio between various objec-
tives. It is fairly dif� cult to adjust ®i , especially when more than
two objectivefunctionsare involvedand the valuesof each objective
are not known precisely. The parametric approach also hides that,
in multi-objectiveoptimization, often not just one but many global
optimal solutions may exist. This is possible due to the slightly dif-
ferent concept of optimum also known as Pareto optimality. The
solution w is considered optimal in the Pareto sense when any im-
provement in one objective function is possible only at the expense
or deteriorationof at least one other criterion.

In the case presented here, a closed-form solution does not ex-
ist because the main optimization criterion, generalization error, is

computedby the bootstrap method.As a matter of fact, only an esti-
mation of generalizationperformancecanbe evaluated,and its value
is contaminatedby noise.To make the situationevenmore complex,
the generalizationerrordependson the weightvectorw as well as on
interconnectiongeometry and node activation functions.This leads
to a mixed continuous/discrete optimization problem because the
main objective function depends on the vector,

x D bw1; w2; : : : ; wL ; c1; : : : ; cL ; f1; : : : ; fK c (4)

in which wi are continuous variables, L is the number of weights
and biases in the unprunednetwork, ci are binary codes that specify
interconnection pattern, and fi are discrete arguments that de� ne
hidden node activation functions, and K is the number of hidden
nodes in the fully connected model.

Findingtheoptimalsolutionwith respectto vectorx is dif� cultbe-
cause bootstrap generalization estimation absorbs substantial CPU
resources due to multiple neural network retraining and recall ses-
sions. In addition, the continuous/discrete nature of the problem
requires that it is decomposed into subproblems, which would be
solved separately by a multilevel hybrid optimization strategy and
iteratively coordinated at a higher level to account for coupling be-
tween subsets of variables.16

To simplify the optimizationprocedure,it was decidedto conduct
the search only in respect to node activation functions f1; : : : ; fK

using genetic algorithms for prede�ned threshold values " j . This
stochastic,zero-order (nongradient) method can handle noisy, mul-
timodal responsesurfaces in discretedecisionspaces. The intercon-
nection geometry c1; : : : ; cL is establishedby a combinationof fast
deterministictechniques:optimal brain surgeon (OBS) and singular
value decomposition (SVD) methods that perform connection and
node pruning.17 Reference17 also contains importantmodi� cations
to the basic algorithm that result in faster and more robust execu-
tion. The weight settingsw1; : : : ; wL are inherited from the pruning
phase. Note that the pruning is conducted until the training does
not exceed the error level of the parent, fully connected network.
The network is accepted by the genetic algorithm if at least 30%
of its weights are removed and if the model could be successfully
trained to the desired accuracy level. This approach accounts for
the two other objectives, namely, the training error and the network
complexity. The entire iterative optimization process is shown on
the � ow diagram in Fig. 3.

Fig. 3 Iterative process of selecting neural network architecture.

GREENMAN ET AL. 455

In this study,a geneticalgorithm(GA) is alsoused in theoptimiza-
tion framework. A genetic algorithm is an evolutionary algorithm
that generates each individual from some encoded form known as
a chromosome or genome. The chromosomes are combined or mu-
tated to breednew individuals.Crossover, the kind of recombination
of chromosomes found in sexual reproduction in nature, is used in
the GA. Here, an offspring’s chromosome is created by joining seg-
ments chosen alternately from each of two parents’ chromosomes,
which are of � xed length.GAs are useful for multidimensionalopti-
mization problems in which the chromosome can encode the values
for the different variables being optimized.

GAs differ from linear search methods: 1) They work with the
coding of the set parameters instead of the parameters themselves.
2) They search a population of points instead of one single point.
3)Theyavoidauxiliaryknowledgeandusingspeci� c objectivefunc-
tion information. 4) GAs use probabilistic rules instead of deter-
ministic rules. Thus, GAs can search great amounts of data very
ef� ciently.

Neural Network Architecture
In efforts to model the data of interestaccurately,it is a goodprac-

tice to visualize the training data as well as to test a few heuristic
preprocessing transformations to learn how they affect the training
process and the overall model performance. During initial investi-
gations, it was found that simple standardizationof input and target
values was able to accelerate signi� cantly the training procedure
and to lead to lower training errors when compared to the appro-
priately rescaled error values obtained from the raw training set.
The standardizationcauses the input and target vectors to have zero
mean and standard deviation equal to one, that is,

xi D . Oxi ¡ Nx/=¾x ; ti D .Oti ¡ Nt/=¾t ; i D 1; : : : ; N (5)

where Oxi and Oti are raw input and target training values, Nx and Nt are
the means of the Ox and Ot variables, respectively, and ¾x and ¾t are
the correspondingstandard deviations.

Moreover, the preliminary tests indicated the presenceof a strong
linear trendbetweencertain input/outputvariables.To reducemodel
bias caused by the apparent mismatch between the original process
and the model structure,this linear trend can be either removedfrom
the data set or the neuralnetwork architecturecan be extended to ac-
commodate the linear relationshipexplicitly. Fortunately, the linear
model can be easily incorporatedinto the classicalfeedforwardneu-
ral structure with linear output units by adding direct connections
(weights) between network sensorsand output nodes.An advantage
of this approach is that most training or pruning methods are able

Fig. 4 Combined neural network architecture with linear model.

to handle the new connections in the same manner as the weights
between adjacent layers.

A techniqueof extendingtraditional,strictly layered feedforward
neural architecture may be important when dealing with linear re-
lationship between input and output data. Also, in many technical
problems, models linear in parameters are frequently utilized. For
example, it may be known that a suitable model has the following
form:

y.x1; x2; x3/ D w0 C w1x1 C w2x2 C w3x3 C w4

¡
x1x2 C x2

3

¢
(6)

where wi .i D 0; : : : ; 4/ are adjustable parameters. This nonlinear
model (with linearly separable weights) can be combined with the
feedforward neural network, as presented in Fig. 4. Thus, empirical
knowledgeabout essential nonlinear componentscan be effectively
utilizedin the newly createdneural architecture.Choosingappropri-
atepreprocessingtechniquesand initialnetworkstructureare crucial
aspects of almost every modeling procedure.Even when supported
by a tedious series of experiments, the resulting fully connected
neuralnetworks are usually suboptimalbecause they tend to contain
redundant connections.Many of those weights can be relatively ef-
� ciently identi� ed and can be removed by pruning algorithms such
as OBS, principal component analysis, and regularization or hy-
brid techniques. In this research, a much less explored impact of
changing the con� guration of activation functions associated with
the hidden nodes is investigated. The common practice is to use
sigmoidal functions, such as hyperbolic tangent or logistic sigmoid
f .a/ D 1=[1 C exp.¡a/] for all of thehiddennodes.Althoughthese
functionsproduce robust neural network models, in certain applica-
tions it may be bene� cial to employ other types of nonlinearities.A
potential improvement in the network performancefrom modifying
the set of activation functions may be comparable or even exceed
the effects of connection pruning.

Alternative activation functions used in the feedforward neural
network may have a well-known saturated S shape and the values
bounded between ¡1 and 1 or 0 and 1. An in� nite number of bipo-
lar sigmoidal functions, with nontrivially different slope curvature
can be generated, for example, by solving � rst-order differential
equations,18

dF .a/

da
D ¯[1 ¡ jF.a/j2]r or

dF .a/

da
D ¯[1 ¡ jF.a/js]

(7)

for different values of r and s (r and s > 0). The ¯ parameter is
adjusted in such a way that F.a/ is bounded between ¡1 and 1.
Unfortunately,for arbitrarilyselectedr and s, the solutionto Eqs. (7)

456 GREENMAN ET AL.

Fig. 5 Different activation functions used in creation of the modi� ed neural models.

cannot be expressedby elementaryfunctionstypicallyimplemented
in computer hardware, but can be only approximated numerically.
Precise functionalapproximationstend to slowdown neuralnetwork
training. This is a serious disadvantagefor the methods that rely on
multiple retrainingsessionsto estimategeneralizationperformance.

Another alternative explored in these experiments is to use ac-
tivation functions that are signi� cantly different from a typical
sigmoidal shape. Besides traditional hyperbolic tangent, F1.a/ D
tanh.a/, four other activation functions that have been successful in
other studies were tested, that is,

F2.a/ D 1 ¡ exp.¡a2/ F3.a/ D log.1 C a2/

F4.a/ D a log.1 C a2/ F5.a/ D sin.a/ (8)

Activation functions F1.a/– F4.a/ are presented in Fig. 5. Indeed,
the additional functions are nonmonotonic or exhibit no saturation.
(In the case of trigonometric sine, there is a periodicity feature as
well.) When different activation functions are selected, a strategy
of searching for an improved solution needs to be addressed. Even
with a few hidden nodes and activation functions, the number of
possible function con� gurationsgrows exponentially.For example,
for a network with 14 hidden nodes and 5 different activations,
the number of different function arrangements is L D 514 > 109, an
amount that clearly prohibits an exhaustive search.

Generalization Error
The generalization error E G can be de� ned as the expected er-

ror of the regression model in response to new stimuli that were
not utilized for in parameter evaluation (training). When the neu-
ral network output Qy D Qµ.x/ approximates some noisy functional
relationship, y D µ.x/ C ", the generalization error can be de� ned
as

E G D
Z

x 2 Ä

[µ.x/ ¡ Qµ .x/]2 p.x/ dx C ¾ 2
"

(9)

where ¾ 2
" is noise variance. It is assumed that the input vectors x

drawn from X are independentlyand identicallydistributedaccord-
ing to some unknown probability density function p.x/. There are

severalstatisticaltechniquesto estimate EG . Obviously,the simplest
techniqueis a direct testingof a givenmodel on a representativepool
of M samples that were not used for training. For the mean square
error, the prediction risk can be approximated by

E G ¼
1
M

MX

i D 1

[yi ¡ Qµ.xi /]
2 (10)

When the number of available data points is small in comparison to
the model size and no observation vectors can be used exclusively
for model veri� cation, cross-validationor bootstrap techniques can
be employed to assess neural network generalization ability. The
performanceof the originalmodel, trained on the full data set, is es-
timatedby subdividingor resamplingthe existingdata, recomputing
weights, and testing derived models. The new models have exactly
the same architecture (identical activation functions and pattern of
connections) as the original neural network but different weight
settings due to changes in the training sets. Both cross-validation
and bootstrap methods are computationally expensive, involving
multiple retraining sessions. However, they do not require explicit
knowledge about p.x/ to compute E G approximation.

Cross-validation techniques are older than the bootstrap
methods.19 Practical experiments indicate that they tend to exhibit
higher variance in comparison to the carefully chosen bootstrap al-
gorithms, but this is not always true. Cross-validation methods are
oftenused in assessingnetworkgeneralizationdue to their simplicity
and intuitiveinterpretation.In the K -foldversionof crossvalidation,
the existingdataset is dividedinto K approximatelyequal segments.
During the subsequent K iterations, one segment is removed from
the original data set, then the network is retrained on the remaining
K ¡ 1 subsets and tested on the excludedsamples. The procedure is
repeated K times for everydata segment, and an averagetest error is
computed that estimates network generalization performance. The
segments could be as small as one data point. In the latter case, a
so-called hold-one-out cross-validationmethod is obtained.

Bootstrappingis another techniquefor estimatinga desiredstatis-
ticswhen theunderlyingdistributionis notknown.20 In thebootstrap
method, it is assumed that the informationabout p.x/ is adequately
preserved in the original data set. The true statistics can be inferred

GREENMAN ET AL. 457

from the relationship between the original data set and pseudo-
(bootstrap) subsets generated by sampling the original trainingdata
with replacement.The sizeof bootstrapsets is the same as the source
set. Informallyspeaking,in the“bootstrapworld” the entirenetwork
input domain is replaced with the only available data set, whereas
bootstrap subsets imitate the multiple original sets that are not at-
tainable in reality. Estimations obtained in the bootstrap world are
then projected into the real problem domain.

Several modi� cations of the bootstrap techniques exist to com-
pute the generalization or prediction error. The simplest and not
recommended version of the bootstrap prediction error estimator
trains B neural models using B bootstrap subsets and then tests
them on the original data set. An estimation of generalization or
prediction error is de� ned as an average,

E G D 1
B

BX

i D 1

E 0
i (11)

where E0
i is the error of the i th bootstrapmodel testedon theoriginal

data. A re� ned modi� cation of the bootstrap procedure does not
estimate the generalization error directly but instead assesses bias
!B betweentheerrorof theoriginalneuralmodel(so-calledapparent
error) and unknown value EG . An estimation of the generalization
error can be formally expressed as

E G D E0
0 C !B (12)

where E 0
0 is an error of the originalmodel tested on the originaldata

set. An expected difference between the apparent error E0
0 and the

generalizationerror is estimated from the bootstrap models:

!B D 1
B

BX

i D 1

¡
E0

i ¡ E¤
i

¢
(13)

where E¤
i is de� ned as an error of the i th bootstrapmodel evaluated

on the i th pseudosetand E0
i is the error of the same model computed

on the full data set. Equation (13) expresseshow much, on average,
the training error of the bootstrap model underestimates the error
computed for the entiredata set. This quantity is then projectedonto
the relationshipbetweentheapparenterror E 0

0 and thegeneralization
error EG yielding an estimate

E G D E0
0 C 1

B

BX

i D 1

¡
E0

i ¡ E¤
i

¢
(14)

Formulas (14) are sometimes presented in more compact forms that
conceal an intuitive meaning of the update shown in Eq. (13) but
avoid evaluating network responses for data points shared between
the original and bootstrap sets.

The third option for obtaining EG computes the generalization
estimate directly from the data points that were not included in the
bootstrap training sets. This is the method that is used in the current
study. A combined error is evaluated over all B bootstrap models
by summing those error components that are associated with data
points not occurring in the corresponding bootstrap subsets. The
aggregate error is then divided by the total number of components
encompassed in the calculations. The new estimator E G can be
written as

E G D

PB
b D 1

P
fi : zi 2 D ^ zi =2 D¤

b
g e2

b;i .zi /
PB

b D 1 #
©
i : zi 2 D ^ zi =2 D¤

b

ª (15)

where D D fzi ´ .xi ; yi /I i D 1 : : : N g is the original set of observa-
tions and D¤ is a bootstrap subset derived from D. Equation (15)
de� nes the Efron E0 estimator.20

The E0 estimator typically provides conservative assessment of
the generalizationerror.19 It was found that the variance of Eq. (15)
may not be necessary lower in comparison to cross-validationmeth-
ods. For a large number of samples, N , the bootstrap method would

tend, on average, to leave out more than 35% of the data points.
The probability that any given point will not be included in a single
pseudosubset is

P
¡
zi =2 D¤

¢
D

³
1 ¡ 1

N

´N

D 1

[1 C 1=.N C 1/]N N ! 1¡! 1
e

¼ 0:3679

(16)

For smaller N , the relative size of the testing set would oscillate
around 1=e, for example, 0.3682§ 0.0205 for the simulating sam-
pling with replacement from N D 227 data points. When the num-
ber of data points is decreased, as much as 40% or even more of
available observations could be excluded from the pseudoset. The
removal of so many training vectors from an originally small data
set may have profound impact on the network response surface. As
a result, instead of lower estimation variance, actually higher esti-
mation variance can be observed. In this study, it was found that
the simple cross-validationprocedure,which puts aside about 15%
of the randomly selected data points and retrains the network on
the remaining pool of data, can reduce the standard deviation of the
prediction risk estimator.

Another way to increase stability of the bootstrap generalization
estimator is to employ a bagging strategy.21 Bagging is a simple sta-
tistical technique that forms multiple versionsof the same estimator
and then averages them. Bagging improves accuracy and stability
of the estimator when the procedure used to compute a single esti-
mator, for example, network training tends to be erratic. A simple
proof of this important property is provided in Ref. 21.

A crucial but rather neglected detail of the cross-validation or
bootstrap methods applied to neural network veri� cation is an im-
plementation of the retraining procedure. Should the test networks
be trained from randomly selected points or the weights of the orig-
inal model be used to initiate retraining? When the weights of the
originalmodel areused to start training,very few iterationscan often
reduce the error to the previous level. As a result, the new weights
may be very similar to the original model, which was trained on
the full data set. Occasionally, the removal of several data points
can by itself lower the learning error so that retraining would be
unnecessary.Obviously, this kind of scenario will cause serious un-
derestimation of the generalization error because the in� uence of
the excluded data points is not fully eliminated. Unfortunately, the
usageof the randomlychosenstartingpointmay bringother typesof
complications.Highly optimizedneuralnetworkswith no redundant
connectionsmay bedif� cult to retrainfromrandomlyselectedinitial
states. It is well known that the retraining performed by gradient-
basedprocedureson nonlinearmodels have a tendencyto stagnatein
local minima or saddle points. Thus, inaccurateweight settings ob-
tained in the retrainingphasewould incorrectlyindicate that smaller
networks exhibit poorer generalization performance and relatively
high estimationvariance.Oversizednetworks that are easier to train
would have discriminatory advantage over smaller models.

To avoid such deceptive results, in this approach the networks
are retrained from the initial weights that were obtained by random
perturbationof the original weight settings, that is,

w¤ D w C ¸diag.r/w (17)

where ¸ D 10 is a scalar representing the level of perturbation and
r is a random, uniformly distributed vector with elements between
¡1 and 1. The level of perturbation ¸ could be adjusted by the
estimation procedure. The perturbation level is initially driven as
high as ¸ D 10. If the retraining procedure fails to regain a desired
error level several times in a row, the perturbation level is grad-
ually decreased by an arbitrary value of

p
2. The lowest weight

perturbation level is ¸ D 0:1. This simple tuning strategy is able to
generate improved starting points for retraining. High disturbance
levels are observedfor oversizedfully connectednetworks,whereas
smaller deviations from the original weight settings are applied for
the pruned neural models. Because the retraining conditions are
chosen to be maximally demanding, the overall retraining time and
CPU load increased. Nevertheless, the networks are able to better
reveal their approximating capabilities.

458 GREENMAN ET AL.

Numerical Experiments
In the benchmarkproblem, high-lift aerodynamicsmodeling, the

initial neural network has a 4–8–6–1 topology (two hidden layers
of 8 and 6 nodes, respectively) with additional direct connections
between network sensors and output (linear model). In the � rst ex-
periment, the generalizationperformanceof the neural models with
a single type of activation function (F1 – F5) is compared. The net-
works included in the comparison are both fully connected and
pruned. The experiment was repeated � ve times using � ve differ-
ent starting points for training. All of the networks were allowed to
be trained using maximum 100 epochsof the Levenberg–Marquardt
method (see Ref. 22); the trainingwas terminatedearlier if the mean
square error error of 10¡4 was reached.The generalizationerrorwas
computed by the bagging version of the E0 Efron20 estimator with
200 successful retraining iterations.Table 1 summarizes the results
obtained. Table 1 con� rms that the pruned networks most often ex-
hibit better generalizationproperties than the fully connectedcoun-
terparts. The table also shows that the hyperbolic tangent activation
may not always be the best choice of nonlinearity for the neurore-
gression tasks. Actually, it was somewhat surprising not to see the
tanh function(code F1) as the best node activation in at least one ex-
perimental run. However, the pruned networks with the hyperbolic
tangent were the smallest in terms of number of weights. The gain
in generalization performance varies on average between two and
� ve times.

In the second series of experiments, a GA was used to search
for the best con� guration of activation functions. In addition, the

Table 1 Generalization error comparison between pruned and
unpruned architectures with single type of activation functiona

Single Unpruned Pruned Pruned Number
activation model model architecture of weights

Tanh (F1) 1.782e¡02 2.209e¡03 4–5–3–1 38
c Gauss (F2) 1.363e¡02 2.002e ¡ 03 4–5–4–1 41
Logsqr (F3) 8.956e ¡ 03 7.032e¡03 4–5–6–1 61
Asymlog .F4/ 1.019e¡02 6.505e¡03 4–8–6–1 90
Sin .F5/ 1.686e¡02 1.206e¡02 4–7–6–1 77
Tanh 1.983e¡02 6.551e¡03 4–7–3–1 53
c Gauss 1.285e¡02 5.311e¡03 4–6–3–1 44
Logsqr 1.377e¡02 3.823e ¡ 03 4–6–4–1 51
Asymlog 9.104e ¡ 03 5.251e¡03 4–6–6–1 69
Sin 1.156e¡02 4.533e¡03 4–7–6–1 82
Tanh 1.476e¡02 2.990e¡03 4–6–3–1 39
c Gauss 1.430e¡02 7.641e¡03 4–6–6–1 67
Logsqr 1.419e¡02 2.762e ¡ 03 4–7–4–1 60
Asymlog 2.455e¡02 4.388e¡03 4–8–4–1 70
Sin 1.196e ¡ 02 5.234e¡03 4–7–5–1 77
Tanh 1.885e¡02 5.194e¡03 4–5–6–1 52
c Gauss 9.595e ¡ 03 5.777e¡03 4–6–6–1 71
Logsqr 1.256e¡02 6.447e¡03 4–6–5–1 70
Asymlog 1.221e¡02 1.143e ¡ 03 4–7–6–1 76
Sin 1.666e¡02 5.195e¡03 4–7–6–1 80
Tanh 1.664e¡02 7.967e¡03 4–4–3–1 40
c Gauss 1.204e ¡ 02 7.638e¡03 4–6–6–1 69
Logsqr 1.660e¡02 2.167e ¡ 03 4–7–4–1 64
Asymlog 1.520e¡02 3.923e¡03 4–7–6–1 74
Sin 1.301e¡02 3.630e¡03 4–7–6–1 88

aBold face indicates the best result in each test run.

Table 2 Performance results and architecture description of the � nal
neural networks from Fig. 6

Best pruned Best pruned
architecture model with

Architecture with tanh mixed activation Improvement Final Number
from Fig. 6 activation functions rate architecture of weights

Fig. 6b 2.209e¡03 8.982e¡04 2.46 4–7–3–1 45
Fig. 6c 6.551e¡03 8.959e¡04 7.31 4–7–4–1 63
Fig. 6d 2.990e¡03 4.652e¡04 6.43 4–6–4–1 44
Fig. 6e 5.194e¡03 7.846e¡04 6.62 4–7–5–1 67
Fig. 6f 7.967e¡03 7.136e¡04 11.16 4–7–2–1 48

network was pruned using a combined OBS/SVD approach. The
stochastic optimization is a very slow and CPU-intensive process.
However, the results produced by an additional layer of optimiza-
tion are rather encouraging. As shown in Table 2, neural networks
with mixed activation functions can achieve further reduction in
generalizationerror. The gains are comparablewith those produced
by the pruning algorithms. This rather impressive accomplishment
may be very important for problems where neural networks strive
to achieve the best possible performance without signi� cantly in-
creasing the model complexity. These gains are compared with the
activation function tanh because it was used in Refs. 2–4, and it is
commonly used.

The � nal neural architectures from Table 2, found by a genetic
optimizerand theparent,fully connectedmodel, are shown in Fig. 6.
In Fig. 6, Fn is the � nal activationfunctionat each node in the hidden
layers. The pruned models do not seem to share a lot of common
topological features. Undoubtedly, the most important feature is an
existence of direct links between network output from the � rst and
the last sensors in all pruned models.

Initial architecture

F5F1F5F5F5F2F5 -- F3F1F2

F1F3F3F4F4F3F1 -- F2F3F4F3

F4F5F2F4F2F1 -- F5F4F4F5

F1F5F4F2F3 -- F1F2F3F2F1

F3F4F3F5F2F2F3 -- F2F5

Fig. 6 Initial and � nal neural network models where Fn is the activa-
tion function at each node in the hidden layer.

GREENMAN ET AL. 459

Conclusions
This paper presents a new hybrid approach for structural opti-

mization of the feedforward, backpropagation neural models. The
method combines into one framework a bagging bootstrap tech-
nique, which estimates neural network generalizationperformance,
and a stochastic, nongradient search strategy, such as a GA, which
uses this estimate to select hidden node activation functions.A dis-
tinguished feature of our approach is that the design task is treated,
in general, as a multi-objective optimization problem. This allows
for a more direct treatment of competing design requirements.The
new method is numerically tested by tuning neural networks that
model high-lift aerodynamics of a multi-element airfoil under the
realistic constrainof a small trainingdata set. Despite the high com-
putational costs of the bootstrap method and hindering variations
of the generalizationestimator, the method produces � nal solutions
that exhibit on average � ve to six times smaller generalization er-
ror in comparison to the two-stage, scrupulously pruned models
with uniform sets of activation functions. A comparison with fully
connected networks shows an even bigger gain in favor of the new
method. Although the retraining processes were designed to be as
dif� cult as possible, the best models found by this algorithmexhibit
remarkably small standard deviation of the generalization estima-
tor. These results con� rm that the solutions possess unique gener-
alization qualities that are virtually impossible to � nd by a manual,
trial-and-errorapproach.

In addition, the following observations were made: 1) For small
datasetsanddemandingmodelingproblems,baggingversionsof the
bootstraptechniquesshouldbe utilizedto reduceestimatorvariance.
2) The starting point in the retraining phase should be generated
in such a way that the in� uence of the bootstrap testing points is
maximally eliminated from the derivedmodels, yet the network can
still reach the desired error level.

References
1Battiti, R., “First- and Second-Order Methods for Learning: Between

Steepest Descent and Newton’s Method,”Neural Computation, Vol. 4,No. 2,
1992, pp. 141–166.

2Greenman, R. M., “Two-Dimensional High-Lift Aerodynamic Opti-
mization Using Neural Networks,” Ph.D. Dissertation, Aeronautical and
Astronautical Engineering Dept., Stanford Univ., Stanford, CA, May 1998,
also NASA TM 112233, June 1998.

3Greenman, R. M., and Roth, K. R., “High-Lift Optimization Design
Using Neural Networks on a Multi-Element Airfoil,” Journal of Fluids En-
gineering, Vol. 121, No. 2, 1999, pp. 434–440.

4Greenman, R. M., and Roth, K. R., “Minimizing Computational Data

Requirements for Multi-Element Airfoils Using Neural Networks,” Journal
of Aircraft, Vol. 36, No. 5, 1999, pp. 777–784.

5Rogers,S.E.,Menter, F.,Durbin,P. A., andMansour,N. N., “Comparison
of Turbulence Models in Computing Multi-Element Airfoil Flows,” AIAA
Paper 94-0291, Jan. 1994.

6Rogers, S., “Manual for the OVERMAGG Script System,” NASA Ames
Research Center, July 1997.

7Rogers, S., “Progress in High-Lift Aerodynamic Calculations,” AIAA
Paper 93-0194, Jan. 1993.

8Chan, W. M., Chui, I. T., and Buning, P. G., “User’s Manual for the
HYPGEN Hyperbolic Grid Generator and the HGUI Graphical User Inter-
face,” NASA TM 108791, 1993.

9Suhs, N. E., and Tramel, R. W., “PEGSUS 4.0 User’s Manual,” Arnold
Engineering Development Center, AEDC-TR-91-8, 1991.

10Rogers, S. E., and Kwak, D., “An Upwind Differencing Scheme for the
Steady State Incompressible Navier–Stokes Equations,” Journal of Applied
Numerical Mathematics, Vol. 8, Aug. 1991, pp. 43–64.

11Rogers, S. E., and Kwak, D., “Upwind Differencing Scheme for the
Time-Accurate Incompressible Navier–Stokes Equations,” AIAA Journal,
Vol. 28, No. 2, 1990, pp. 253–262.

12Spalart, P. R., and Allmaras, S. R., “One-Equation Turbulence Model
for Aerodynamic Flows,” AIAA Paper 92-0439, Jan. 1992.

13Dominik, C., “Application of the Incompressible Navier–Stokes Equa-
tions to High-Lift Flows,” AIAA Paper 94-1872, June 1994.

14Valarezo, W. O., and Chin, V. D., “Method of Prediction of Wing Max-
imum Lift,” Journal of Aircraft, Vol. 31, No. 1, 1994, pp. 103–109.

15Pedersen, M. W., Hansen, L. K., and Larsen, J., “Pruning with Gener-
alization Based Weight Saliencies: ° OBD, ° OBS, Advances in Neural In-
formation Processing Systems,” Proceedings of the 1995 Conference, MIT
Press, Cambridge, MA, 1996, pp. 521–527.

16Barthelemy, J., and Francois, M., “Engineering Applications of
Heuristic Multilevel Optimization Methods,” Discretization Methods and
Structural Optimization—Procedures and Applications; Proceedings of the
GAMM Seminar, Springer-Verlag, 1989, pp. 24–31.

17Stepniewski, S. W., and Jorgensen, C. C., “Toward a More Robust Prun-
ing Procedure for MLP Networks,” NASA TM 112225, April 1998.

18Bell, A. J., and Sejnowski, T. J., “An Information-Maximization Ap-
proach to Blind Separation and Blind Deconvolution,”Neural Computation,
Vol. 7, No. 6, 1995, pp. 1129–1159.

19Ueda, N., and Nakano, R., “Estimating Expected Error Rates of Neural
Network Classi� ers in Small Sample Situations: A Comparison of Cross-
Validation and Bootstrap,” Inst. of Electrical and Electronics Engineers,
IEEE Paper 0-7803-2768-3,1995.

20Efron, B., and Tibshirani, R. J., An Introduction to the Bootstrap,
Chapman and Hall, New York, 1993.

21Breiman, L., “Bagging Predictors,” Machine Learning, Vol. 24, No. 2,
1996, pp. 123–140.

22Fletcher, R., Practical Methods of Optimization, Wiley, New York,
1987.

