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Roxana M. Greenman*
Lawrence Livermore National Laboratory, Livermore, California 94551
Slawomir W. Stepniewski'
SONY Electronics, San Jose, California 95134
and
Charles C. Jorgensen* and Karlin R. Roth®
NASA Ames Research Center, Moffett Field, California 94035

A new hybrid method is presented for designing feedforward, backpropagation neural models with small train-
ing data sets. The method minimizes the generalization error, a fundamental quantity that characterizes the
effectiveness of the regression models. It combines into one framework a bootstrap technique that estimates net-
work generalization performance and a collection of stochastic and deterministic optimization techniques that
adjust neural network interconnection geometry. The approach is derived as a form of multi-objective optimiza-
tion strategy. This allows for more direct treatment of contradictory design criteria than traditionally employed
single-objective techniques. A stochastic optimization method such as a genetic algorithm is used to select activation
functions for hidden-layer nodes, whereas fast deterministic techniques, optimal brain surgeon and singular value
decomposition, are used to perform connection and node pruning. The method is demonstrated by optimizing
neural networks that model the high-lift aerodynamics of a multi-element airfoil. The neural model is constructed
using a small computational data set consisting of 227 data points. In the numerical experiments presented, the
solutions produced by this hybrid approach exhibit an improvement in the generalization ability on the average of
five to six times when compared to the pruned models with only one type of activation function. When traditional
fully connected networks with hyperbolic tangent activation functions are considered, the improvement in the
generalization performance of the new models is even greater. The neural models exhibit superior generalization

qualities that are virtually impossible to find by manual trial-and-error approaches.

Introduction

EEDFORWARD, backpropagation neural networks are well

known for their robust classification and approximation capa-
bilities. Although they can be employedin a variety of applications,
itis especially advantageousto utilize them in problems with intrin-
sically small and/or noisy data. The parameters or weights of neural
networks can be adjusted offline by an array of well-understood
first- or second-orderoptimization algorithms using training exem-
plars acquired beforehand.! A somewhat more complicatedissue is
how to choose the optimal neural topology for a given problem. In
real-world scenarios, this question cannot be answered by a sim-
ple mathematical formula but through extensive experimental test-
ing and/or utilization of sophisticated optimization techniques that
attempt to discover the best performing networks.

Construction of accurate neural models that generalize well is
neither a fast nor a trivial task. This observationis especially valid
for problems where traditional regression models were utilized, re-
vised, and carefully tuned for many years. Simple replacement of
those models with standard feedforward architectureequipped with
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one or two hidden layers and sufficient nonlinear units may lead to
unsatisfactoryresults. The reason for this is that the neural network
models are not expected to perform nearly as well as the existing
solutions. To be considered a serious alternative in industrial appli-
cations, they have to function significantly better. Otherwise, there
is no justification for undertaking technological and financial risks
associated with implementing alternative modeling techniques.

A typicalrequirementin functionapproximationtasks is to obtain
a mathematical description of the relationship between regressors
with a deviation from the actual observations not exceeding a cer-
tain threshold and the model response surface being maximally flat
between training points. When an actual distribution of the input
vectors is encompassed, this requirement may be specified more
formally, in terms of generalizationerror, that is, an expected error
of a given model for new, unseeninputs. Generalizationerror quan-
tifies the effectiveness of the regression models, and as such, this
value can be used to discriminate between various neural networks.

Because feedforward neural networks are nonlinear, complex
mathematical models, their fine tuning can seldom be performed
manually. An automatic approach to the structural optimization of
neural networks is importantbecause such a technique can ease and
shorten the design process. In addition, in some situations, ensem-
bles or mixtures of several well-fitted neural networks can to be
utilized to further increase approximation accuracy over a given in-
putdomain. Automatic proceduresare well suited for rapid creation
of such models.

The ensemble should be built from the models that are accurate
but different, that is, they have minimally correlated errors. It is in-
teresting that a generalizationperformance estimator can be utilized
not only in the search for the best neural networks but also to bind
together several models. A weighted average of responses
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combines expertise of individual networks. In Eq. (1), é(x[) is the
networkresponse, EF is an estimate of the generalizationerrorof the
ith neural network, and R is the number of models in the ensemble.

Problem Statement and Training Set Generation

Feedforward neural networks are used to model high-liftaerody-
namics of a multi-elementairfoil. An example of the three-element
airfoil is shown in Fig. la. This multi-element airfoil was used in
studies conducted by Greenman? and Greenman and Roth** to op-
timize the high-lift performance. The high-lift system of an aircraft
is a crucial part of design because it influences takeoff and landing
performance. The importance of a well-designed high-lift system
is seen with increased payloads, which also increase operational
flexibility by extending ranges and by decreasing takeoff and land-
ing distances. Traditionally, high-lift designs have been produced
by extensive wind-tunnel and flight programs, which are expensive
and difficult due to the large design space. Recently, computational
fluid dynamics (CFD) has been incorporatedin high-liftdesign. For
high-liftapplications, CFD can also be expensive because the entire
design space is large, grids must be generated around geometri-
cally complicated high-lift devices, and complex phenomena must
be resolved. To achieve optimum, rapid designs, neural networks
are investigated as a tool for fast and efficient analysis of high-lift
configurations.

The neural network models used flap riggings, that is, flap de-
flections, overlap, and gap (Fig. 1b), and angles of attack as inputs
(four variables) and the lift coefficient as output. The training set
is generated using a two-dimensional, incompressible Navier-
Stokes solver. The entire training data set consists of 227 input/
output pairs. Such a small data set is fairly typical in aerospace
problems; generation of larger sets is often an expensive and time-
consuming process. In some instances, it is virtually impossible to
reproduce previous experiments to add more data as required.

Availability of a limited number of samples creates certain com-
plications in computing and validating neural network models. The
entire setof data pointscannotbe simply dividedinto the trainingand
testing subsets because this can severely undermine the performance
of the neural network. Moreover, when only a small data subset is
used for model verification, a large optimistic bias in estimation is
likely to occur. Another important issue is how to split the available
data so the underlying distribution will not be seriously corrupted.
Because of the small number of samples, all available data have to
be utilized in the primary task of neural network training. The lack
of an explicit verification set can be compensated to a certain extent
by employing more sophisticatedstatistical techniquessuch as cross
validation or bootstrapping (see “Generalization Error” section).

The geometry studied was a three-elementairfoil, whose sections
consist of a 12%c LB-546 slat® NACA 63,-215 Mod B main ele-
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Fig. 1 Three-element airfoil.

Fig. 2 Grid around three-element airfoil (every other point shown for
clarity).

ment and a 30%c Fowler flap, where c is the chord of the cruise
wing. The slat has a deflection of §; =6.0 deg, gap, =2.0%c,
and overlap of ol; =—0.05%c (Fig. 1lc). For the computational
database, 51 different flap riggings are created for each slat de-
flection. The flap riggings are combinations of the flap deflection,
gap, and overlap, which are defined in Fig. 1b. The flap deflec-
tion angle’s range is 25.0 <&, < 38.5 deg. The gap setting’s range
is 1.5%c < gap; < 2.7%c, whereas the overlap setting’s range is
0.4%c <ol; <1.5%c. All gap and overlap values are expressed in
terms of percent chord.

The grids around the three-elementairfoil are generated by using
OVERMAGG,® which is an automated script system used to per-
form overset multi-element airfoil grid generation. The rule-based
high-liftgrid generation techniques contained within OVERMAGG
have evolved from the high-lift CFD applications by Rogers.”
OVERMAGG takes as input the surface definition of the individual
elements of the airfoil. It then creates a surface grid for each individ-
ual element by generating and redistributing points from the given
surface definition. It calls the HYPGEN code® to generate volume
grids abouteach element. OVERMAGG also automaticallycalls the
PEGSUS code’ to unite the individual meshes into an overset grid
system, which is the final output of OVERMAGG.

Figure 2 shows the grid system. A total of 121,154 grid points is
used, consistingof a 242 x 81 C grid around the slat,a 451 x 131 C
grid around the main element, and a 351 x 121 embedded grid
around the flap, which is used to help resolve the merging wake
in this region. The normal wall spacing for all grids is 5 x 107°
chords, and Re, =3.7 x 10°. Grid density studies, documented in
Ref. 2, show that this system adequately captures the flow.

To generatethe necessary computationaltraining data, each high-
lift configurationis analyzedat differentangles of attackin therange
0.0 <« <12.0 deg. The incompressible Navier-Stokes equations
in two-dimensional generalized coordinates are solved using the
INS2D-UP!®!! flow solver. This code has been used extensively
to predict multi-element airfoil flow.>> The equations are solved
using a generalized minimum residual implicit scheme. Because
the flow is turbulent, the Spalart-Allmaras turbulence model'? is
used. This turbulence model has been successfully used to compute
high-lift flowfields.>!* The flow was treated as fully turbulent for
all elements in the computations. An empirically based criterion'*
designated the pressure difference rule, was applied to the training
set because numerical inaccuracies for the computational method
were identified near maximum lift. (For specific details, refer to
Refs. 2-4.)

Optimization Framework

The procedure of tuning a neural network architectureis an opti-
mization problem that typically involves multiple criteria. The most
common requirement is that the network should accurately repro-
duce the training data. Also, it is important that the model should
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generate adequate approximations for the input vectors that were
not directly included in the training set. (The new input stimuli are
assumed to be drawn from the same distributionas the learning set.)
Moreover, the network is expected to have a compact architecture
expressed, for example, in terms of the number of weights, hidden
nodes, and/or input sensors. Smaller networks are important from
the aesthetic as well as the economic point of view. (Complex so-
lutions are often more expensive.) Structurally optimized networks
are also less prone to learning spurious corrections present in the
data, a feature that is particularly important in adaptive systems, in
online learning, and in situations when the number of training data
is small.

At least three major optimization objectives are considered, ei-
ther explicitly or implicitly, in designing neural network models:
training error, generalization performance, and network size or in-
terconnection complexity. In many cases, the just iterated criteria
are contradictory: Larger networks with more adjustable parame-
ters are easier to train, but this occurs at the expense of general-
ization. Networks with inadequately small structure also exhibit
deteriorated generalization performance. A well-documented re-
lationship between generalization and training error suggests that
excessive training may not benefit generalization. Commonly em-
ployed approachesdevelopedfor designing feedforward neural net-
works convert multicriteria optimization problems into the scalar
minimization. This is the simplest solution to multi-objective prob-
lems. By the additionof two or more appropriatelyscaled objectives,
a vector optimization is converted to the scalar (parametric) opti-
mization task. If E,(w) and E,(w) denote training accuracy and
network complexity measure, respectively, then

min ® (w), dw)=10—-a)E,w)+aE,(w) (2)

where w is a vector of all network weights and biases. The cost
function ® (w) may be extended by adding additional components
suchthate; >0 and ), o; =1.

For example, in Ref. 15, a differentiable estimation of general-
ization error is investigated.

Usually the L, norm or mean square error is used as a measure
of learning accuracy E; (w). This is done under the assumption of
normal distributionof noise presentin the training data. A complex-
ity measure such as weight decay [Eq. (3a)] or weight elimination
[Eq. (3b)] can be used in conjunction with E| (w), that is,

Exw)= Y w? (3a)
2
Exw)= # (3b)

i

where 8 > 0is a user-adjustableparameter. AlthoughEgs. (3) do not
express the model size directly because a number of active weights
E, (w) becomes smaller as w; — 0. Moreover, the function has the
very desirable feature of being differentiablein respect to vector w.
This allows a wider range of efficient, gradient-based optimiza-
tion methods to be applicable in searching for the optimal weight
settings.

A disadvantage of the parametric approach is that «; provides
rather limited control of the relative ratio between various objec-
tives. It is fairly difficult to adjust «;, especially when more than
two objectivefunctionsare involved and the values of each objective
are not known precisely. The parametric approach also hides that,
in multi-objective optimization, often not just one but many global
optimal solutions may exist. This is possible due to the slightly dif-
ferent concept of optimum also known as Pareto optimality. The
solution w is considered optimal in the Pareto sense when any im-
provementin one objective functionis possible only at the expense
or deterioration of at least one other criterion.

In the case presented here, a closed-form solution does not ex-
ist because the main optimization criterion, generalization error, is

computed by the bootstrap method. As a matter of fact, only an esti-
mation of generalizationperformancecan be evaluated,and its value
is contaminated by noise. To make the situation even more complex,
the generalizationerror depends on the weight vectorw as well as on
interconnectiongeometry and node activation functions. This leads
to a mixed continuous/discrete optimization problem because the
main objective function depends on the vector,

e S, fxd 4)

in which w; are continuous variables, L is the number of weights
and biases in the unpruned network, ¢; are binary codes that specify
interconnection pattern, and f; are discrete arguments that define
hidden node activation functions, and K is the number of hidden
nodes in the fully connected model.

Finding the optimal solution with respectto vectorx is difficult be-
cause bootstrap generalization estimation absorbs substantial CPU
resources due to multiple neural network retraining and recall ses-
sions. In addition, the continuous/iiscrete nature of the problem
requires that it is decomposed into subproblems, which would be
solved separately by a multilevel hybrid optimization strategy and
iteratively coordinated at a higher level to account for coupling be-
tween subsets of variables.'®

To simplify the optimizationprocedure, it was decided to conduct
the search only in respect to node activation functions fi, ..., fx
using genetic algorithms for predefined threshold values ¢;. This
stochastic, zero-order (nongradient) method can handle noisy, mul-
timodal response surfaces in discrete decision spaces. The intercon-
nection geometrycy, .. ., ¢, is established by a combination of fast
deterministictechniques: optimal brain surgeon (OBS) and singular
value decomposition (SVD) methods that perform connection and
node pruning.!” Reference 17 also contains importantmodifications
to the basic algorithm that result in faster and more robust execu-
tion. The weight settings wy, ..., w; are inherited from the pruning
phase. Note that the pruning is conducted until the training does
not exceed the error level of the parent, fully connected network.
The network is accepted by the genetic algorithm if at least 30%
of its weights are removed and if the model could be successfully
trained to the desired accuracy level. This approach accounts for
the two other objectives, namely, the training error and the network
complexity. The entire iterative optimization process is shown on
the flow diagram in Fig. 3.

x=|wy, wy,...,wr,Cy,.
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Assign activation functions
to the hidden nodes using
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Fig. 3 Iterative process of selecting neural network architecture.
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In this study, a geneticalgorithm(GA)is alsoused in the optimiza-
tion framework. A genetic algorithm is an evolutionary algorithm
that generates each individual from some encoded form known as
a chromosome or genome. The chromosomes are combined or mu-
tated to breed new individuals. Crossover, the kind of recombination
of chromosomes found in sexual reproduction in nature, is used in
the GA. Here, an offspring’s chromosome is created by joining seg-
ments chosen alternately from each of two parents’ chromosomes,
which are of fixed length. GAs are useful for multidimensionalopti-
mization problems in which the chromosome can encode the values
for the different variables being optimized.

GAs differ from linear search methods: 1) They work with the
coding of the set parameters instead of the parameters themselves.
2) They search a population of points instead of one single point.
3) They avoid auxiliaryknowledgeand using specific objective func-
tion information. 4) GAs use probabilistic rules instead of deter-
ministic rules. Thus, GAs can search great amounts of data very
efficiently.

Neural Network Architecture

In efforts to model the data of interestaccurately,it is a good prac-
tice to visualize the training data as well as to test a few heuristic
preprocessing transformations to learn how they affect the training
process and the overall model performance. During initial investi-
gations, it was found that simple standardizationof input and target
values was able to accelerate significantly the training procedure
and to lead to lower training errors when compared to the appro-
priately rescaled error values obtained from the raw training set.
The standardizationcauses the input and target vectors to have zero
mean and standard deviation equal to one, that is,

x; = & — X)/o,, t = —1)/o,, i=1,...,.N (5
where £; and 7; are raw input and target training values, X and 7 are
the means of the £ and f variables, respectively, and o, and o, are
the corresponding standard deviations.

Moreover, the preliminary tests indicated the presence of a strong
linear trend between certain input/output variables. To reduce model
bias caused by the apparent mismatch between the original process
and the model structure, this linear trend can be eitherremoved from
the data set or the neural network architecturecan be extended to ac-
commodate the linear relationship explicitly. Fortunately, the linear
model can be easily incorporatedinto the classical feedforwardneu-
ral structure with linear output units by adding direct connections
(weights) between network sensorsand output nodes. An advantage
of this approach is that most training or pruning methods are able
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to handle the new connections in the same manner as the weights
between adjacent layers.

A technique of extending traditional, strictly layered feedforward
neural architecture may be important when dealing with linear re-
lationship between input and output data. Also, in many technical
problems, models linear in parameters are frequently utilized. For
example, it may be known that a suitable model has the following
form:

(X, Xa, X3) = wo + WXy + WaXy + wixz + w4(x1x2 +X32) (6)

where w; (i =0, ...,4) are adjustable parameters. This nonlinear
model (with linearly separable weights) can be combined with the
feedforward neural network, as presented in Fig. 4. Thus, empirical
knowledge about essential nonlinear components can be effectively
utilizedin the newly created neural architecture. Choosing appropri-
ate preprocessingtechniquesandinitial network structureare crucial
aspects of almost every modeling procedure. Even when supported
by a tedious series of experiments, the resulting fully connected
neural networks are usually suboptimal because they tend to contain
redundant connections. Many of those weights can be relatively ef-
ficiently identified and can be removed by pruning algorithms such
as OBS, principal component analysis, and regularization or hy-
brid techniques. In this research, a much less explored impact of
changing the configuration of activation functions associated with
the hidden nodes is investigated. The common practice is to use
sigmoidal functions, such as hyperbolic tangent or logistic sigmoid
f(a)=1/[14 exp(—a)] forall of the hiddennodes. Althoughthese
functions produce robust neural network models, in certain applica-
tions it may be beneficial to employ other types of nonlinearities. A
potential improvementin the network performance from modifying
the set of activation functions may be comparable or even exceed
the effects of connection pruning.

Alternative activation functions used in the feedforward neural
network may have a well-known saturated S shape and the values
bounded between —1 and 1 or 0 and 1. An infinite number of bipo-
lar sigmoidal functions, with nontrivially different slope curvature
can be generated, for example, by solving first-order differential
equations,'®

dF dF
D g F@Pr or @ _ g1 - IF@))
a da
™

for different values of r and s (r and s > 0). The 8 parameter is
adjusted in such a way that F(a) is bounded between —1 and 1.
Unfortunately,for arbitrarilyselected r and s, the solutionto Eqgs. (7)

combined neural
network

Fig. 4 Combined neural network architecture with linear model.
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Fig. 5 Different activation functions used in creation of the modified neural models.

cannot be expressed by elementary functions typically implemented
in computer hardware, but can be only approximated numerically.
Precise functionalapproximationstend to slow down neuralnetwork
training. This is a serious disadvantage for the methods that rely on
multiple retraining sessions to estimate generalizationperformance.

Another alternative explored in these experiments is to use ac-
tivation functions that are significantly different from a typical
sigmoidal shape. Besides traditional hyperbolic tangent, F;(a) =
tanh(a), four other activation functions that have been successfulin
other studies were tested, that is,

Fy(a) = 1 — exp(—a?) Fs(a) = log(1 +a*)

F,(a) = alog(l + a?) F5(a) = sin(a) (8)
Activation functions F) (a)-Fy(a) are presented in Fig. 5. Indeed,
the additional functions are nonmonotonic or exhibit no saturation.
(In the case of trigonometric sine, there is a periodicity feature as
well.) When different activation functions are selected, a strategy
of searching for an improved solution needs to be addressed. Even
with a few hidden nodes and activation functions, the number of
possible function configurations grows exponentially. For example,
for a network with 14 hidden nodes and 5 different activations,
the number of different function arrangementsis L =5 > 10°, an
amount that clearly prohibits an exhaustive search.

Generalization Error
The generalization error E¢ can be defined as the expected er-
ror of the regression model in response to new stimuli that were
not utilized for in parameter evaluation (training). When the neu-
ral network output y = 6 (x) approximates some noisy functional
relationship, y = 6(x) + ¢, the generalization error can be defined
as

E°¢ =/ [0(x) — ()] p(x) dx + o7 )
xeQ

where o2 is noise variance. It is assumed that the input vectors x
drawn from Q are independentlyand identically distributed accord-
ing to some unknown probability density function p(x). There are

severalstatisticaltechniquesto estimate E¢. Obviously, the simplest
techniqueis adirecttestingof a given model on a representativepool
of M samples that were not used for training. For the mean square
error, the predictionrisk can be approximated by

1 < .
E ) i = 0] (10)

i=1

When the number of available data points is small in comparison to
the model size and no observation vectors can be used exclusively
for model verification, cross-validationor bootstrap techniques can
be employed to assess neural network generalization ability. The
performance of the original model, trained on the full data set, is es-
timated by subdividingorresampling the existing data, recomputing
weights, and testing derived models. The new models have exactly
the same architecture (identical activation functions and pattern of
connections) as the original neural network but different weight
settings due to changes in the training sets. Both cross-validation
and bootstrap methods are computationally expensive, involving
multiple retraining sessions. However, they do not require explicit
knowledge about p(x) to compute E¢ approximation.
Cross-validation techniques are older than the bootstrap
methods.!” Practical experiments indicate that they tend to exhibit
higher variance in comparison to the carefully chosen bootstrap al-
gorithms, but this is not always true. Cross-validation methods are
oftenusedin assessingnetwork generalizationdue to their simplicity
and intuitiveinterpretation.In the K -fold versionof cross validation,
the existingdatasetis dividedinto K approximatelyequal segments.
During the subsequent K iterations, one segment is removed from
the original data set, then the network is retrained on the remaining
K — 1 subsets and tested on the excluded samples. The procedure is
repeated K times for every data segment, and an averagetesterror is
computed that estimates network generalization performance. The
segments could be as small as one data point. In the latter case, a
so-called hold-one-outcross-validationmethod is obtained.
Bootstrappingis anothertechnique for estimating a desired statis-
tics when the underlyingdistributionis notknown.?° In the bootstrap
method, it is assumed that the informationabout p(x) is adequately
preserved in the original data set. The true statistics can be inferred
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from the relationship between the original data set and pseudo-
(bootstrap) subsets generated by sampling the original training data
with replacement. The size of bootstrapsets is the same as the source
set. Informally speaking,in the “bootstrap world” the entire network
input domain is replaced with the only available data set, whereas
bootstrap subsets imitate the multiple original sets that are not at-
tainable in reality. Estimations obtained in the bootstrap world are
then projected into the real problem domain.

Several modifications of the bootstrap techniques exist to com-
pute the generalization or prediction error. The simplest and not
recommended version of the bootstrap prediction error estimator
trains B neural models using B bootstrap subsets and then tests
them on the original data set. An estimation of generalization or
prediction error is defined as an average,

1 B
EG=EZE[U (11)

i=1

where E? is the error of the ith bootstrapmodel tested on the original
data. A refined modification of the bootstrap procedure does not
estimate the generalization error directly but instead assesses bias
wp betweentheerrorof the originalneural model (so-calledapparent
error) and unknown value E¢. An estimation of the generalization
error can be formally expressed as

ES = E{ + wp (12)

where E{ is an error of the original model tested on the original data
set. An expected difference between the apparent error E and the
generalizationerror is estimated from the bootstrap models:

B
wg =%Z(E}J—E[*) (13)

i=1

where E is defined as an error of the i th bootstrapmodel evaluated
ontheith pseudosetand E? is the error of the same model computed
on the full data set. Equation (13) expresseshow much, on average,
the training error of the bootstrap model underestimates the error
computed for the entire data set. This quantity is then projected onto
therelationshipbetweenthe apparenterror E{ and the generalization
error E¢ yielding an estimate

B
ES =E8+%Z(E?—E[*) (14)

i=1

Formulas (14) are sometimes presented in more compact forms that
conceal an intuitive meaning of the update shown in Eq. (13) but
avoid evaluating network responses for data points shared between
the original and bootstrap sets.

The third option for obtaining E¢ computes the generalization
estimate directly from the data points that were not included in the
bootstrap training sets. This is the method thatis used in the current
study. A combined error is evaluated over all B bootstrap models
by summing those error components that are associated with data
points not occurring in the corresponding bootstrap subsets. The
aggregate error is then divided by the total number of components
encompassed in the calculations. The new estimator E€ can be
written as

B
£G _ Zb:l Z([:zieDAzi¢DZ)elzz.[(Z[)
o #li:zeDAz ¢ D}

(15)

where D ={z; = (x;, y;); i = 1... N} is the original set of observa-
tions and D* is a bootstrap subset derived from D. Equation (15)
defines the Efron EQ estimator.?’

The EO estimator typically provides conservative assessment of
the generalizationerror.19 It was found that the variance of Eq. (15)
may not be necessary lower in comparisonto cross-validationmeth-
ods. For a large number of samples, N, the bootstrap method would

tend, on average, to leave out more than 35% of the data points.
The probability that any given point will not be included in a single
pseudosubsetis

N
1 1 1
PlagD)=(1-=) = ——— 2=~ 0367
(& ¢ 7) ( N) [T+ 1/(N+ DIV " e ?

(16)

For smaller N, the relative size of the testing set would oscillate
around 1/e, for example, 0.3682 % 0.0205 for the simulating sam-
pling with replacement from N =227 data points. When the num-
ber of data points is decreased, as much as 40% or even more of
available observations could be excluded from the pseudoset. The
removal of so many training vectors from an originally small data
set may have profound impact on the network response surface. As
a result, instead of lower estimation variance, actually higher esti-
mation variance can be observed. In this study, it was found that
the simple cross-validationprocedure, which puts aside about 15%
of the randomly selected data points and retrains the network on
the remaining pool of data, can reduce the standard deviation of the
predictionrisk estimator.

Another way to increase stability of the bootstrap generalization
estimatoris to employ a bagging strategy.?! Bagging is a simple sta-
tistical technique that forms multiple versions of the same estimator
and then averages them. Bagging improves accuracy and stability
of the estimator when the procedure used to compute a single esti-
mator, for example, network training tends to be erratic. A simple
proof of this important property is provided in Ref. 21.

A crucial but rather neglected detail of the cross-validation or
bootstrap methods applied to neural network verification is an im-
plementation of the retraining procedure. Should the test networks
be trained from randomly selected points or the weights of the orig-
inal model be used to initiate retraining? When the weights of the
originalmodel are used to start training, very few iterations can often
reduce the error to the previous level. As a result, the new weights
may be very similar to the original model, which was trained on
the full data set. Occasionally, the removal of several data points
can by itself lower the learning error so that retraining would be
unnecessary. Obviously, this kind of scenario will cause serious un-
derestimation of the generalization error because the influence of
the excluded data points is not fully eliminated. Unfortunately, the
usage of the randomly chosen starting point may bring othertypes of
complications.Highly optimized neural networks with noredundant
connectionsmay be difficulttoretrainfromrandomly selectedinitial
states. It is well known that the retraining performed by gradient-
based procedureson nonlinearmodels have a tendency to stagnatein
local minima or saddle points. Thus, inaccurate weight settings ob-
tainedin theretraining phase would incorrectly indicate that smaller
networks exhibit poorer generalization performance and relatively
high estimation variance. Oversized networks that are easier to train
would have discriminatory advantage over smaller models.

To avoid such deceptive results, in this approach the networks
are retrained from the initial weights that were obtained by random
perturbation of the original weight settings, that is,

w* = w + Adiag(r)w (17

where A = 10 is a scalar representing the level of perturbation and
r is a random, uniformly distributed vector with elements between
—1 and 1. The level of perturbation A could be adjusted by the
estimation procedure. The perturbation level is initially driven as
high as A = 10. If the retraining procedure fails to regain a desired
error level several times in a row, the perturbation level is grad-
ually decreased by an arbitrary value of /2. The lowest weight
perturbation level is A = 0.1. This simple tuning strategy is able to
generate improved starting points for retraining. High disturbance
levels are observed for oversized fully connectednetworks, whereas
smaller deviations from the original weight settings are applied for
the pruned neural models. Because the retraining conditions are
chosen to be maximally demanding, the overall retraining time and
CPU load increased. Nevertheless, the networks are able to better
reveal their approximating capabilities.
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Numerical Experiments

In the benchmark problem, high-lift aerodynamics modeling, the
initial neural network has a 4-8-6-1 topology (two hidden layers
of 8 and 6 nodes, respectively) with additional direct connections
between network sensors and output (linear model). In the first ex-
periment, the generalization performance of the neural models with
a single type of activation function (F;-F5s) is compared. The net-
works included in the comparison are both fully connected and
pruned. The experiment was repeated five times using five differ-
ent starting points for training. All of the networks were allowed to
be trained using maximum 100 epochs of the Levenberg-Marquardt
method (see Ref. 22); the training was terminated earlier if the mean
square errorerror of 10~* was reached. The generalizationerror was
computed by the bagging version of the E0 Efron?® estimator with
200 successful retraining iterations. Table 1 summarizes the results
obtained. Table 1 confirms that the pruned networks most often ex-
hibit better generalization properties than the fully connected coun-
terparts. The table also shows that the hyperbolic tangent activation
may not always be the best choice of nonlinearity for the neurore-
gression tasks. Actually, it was somewhat surprising not to see the
tanh function(code F)) as the best node activationin at least one ex-
perimental run. However, the pruned networks with the hyperbolic
tangent were the smallest in terms of number of weights. The gain
in generalization performance varies on average between two and
five times.

In the second series of experiments, a GA was used to search
for the best configuration of activation functions. In addition, the

Table 1 Generalization error comparison between pruned and
unpruned architectures with single type of activation function®

Single Unpruned Pruned Pruned Number
activation model model architecture  of weights
Tanh (F) 1.782¢—02  2.209¢—03 4-5-3-1 38
¢ Gauss (F) 1.363¢—02  2.002¢— 03 4-5-4-1 41
Logsqr (F3) 8.956e— 03  7.032¢—03 4-5-6-1 61
Asymlog (Fy) 1.019¢—02 6.505¢—03 4-8-6-1 90
Sin (Fs) 1.686e—02  1.206e—02 4-7-6-1 77
Tanh 1.983¢—02  6.551e—03 4-7-3-1 53
¢ Gauss 1.285¢—02  5.311e—03 4-6-3-1 44
Logsqr 1.377e—02  3.823¢— 03 4-6-4-1 51
Asymlog 9.104e— 03  5.251e—03 4-6-6-1 69
Sin 1.156e—02  4.533¢—03 4-7-6-1 82
Tanh 1.476e—02  2.990e—03 4-6-3-1 39
¢ Gauss 1.430e—02  7.641e—03 4-6-6-1 67
Logsqr 1.419¢—02  2.762— 03 4-7-4-1 60
Asymlog 2.455¢—02  4.388¢—03 4-8-4-1 70
Sin 1.196e— 02  5.234¢—03 4-7-5-1 77
Tanh 1.885¢—02  5.194e—03 4-5-6-1 52
¢ Gauss 9.595¢— 03  5.777¢—03 4-6-6-1 71
Logsqr 1.256e—02  6.447¢—03 4-6-5-1 70
Asymlog 1.221e—02  1.143e— 03 4-7-6-1 76
Sin 1.666e—02  5.195¢—03 4-7-6-1 80
Tanh 1.664e—02  7.967¢—03 4-4-3-1 40
¢ Gauss 1.204e— 02  7.638¢—03 4-6-6-1 69
Logsqr 1.660e—02  2.167e— 03 4-7-4-1 64
Asymlog 1.520e—02  3.923¢—03 4-7-6-1 74
Sin 1.301e—02  3.630e—03 4-7-6-1 88

“Bold face indicates the best result in each test run.

network was pruned using a combined OBS/SVD approach. The
stochastic optimization is a very slow and CPU-intensive process.
However, the results produced by an additional layer of optimiza-
tion are rather encouraging. As shown in Table 2, neural networks
with mixed activation functions can achieve further reduction in
generalizationerror. The gains are comparable with those produced
by the pruning algorithms. This rather impressive accomplishment
may be very important for problems where neural networks strive
to achieve the best possible performance without significantly in-
creasing the model complexity. These gains are compared with the
activation function tanh because it was used in Refs. 2-4, and it is
commonly used.

The final neural architectures from Table 2, found by a genetic
optimizer and the parent, fully connectedmodel, are shown in Fig. 6.
InFig. 6, F, is the final activationfunctionat each node in the hidden
layers. The pruned models do not seem to share a lot of common
topological features. Undoubtedly, the most important feature is an
existence of direct links between network output from the first and
the last sensors in all pruned models.
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Fig. 6 Initial and final neural network models where F, is the activa-
tion function at each node in the hidden layer.
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Table 2 Performance results and architecture description of the final
neural networks from Fig. 6

Best pruned Best pruned

architecture model with
Architecture with tanh mixed activation ~ Improvement Final Number
from Fig. 6 activation functions rate architecture  of weights
Fig. 6b 2.209¢—03 8.982¢—04 2.46 4-7-3-1 45
Fig. 6¢ 6.551e—03 8.959—04 7.31 4-7-4-1 63
Fig. 6d 2.990e—03 4.652¢e—04 6.43 4-6-4-1 44
Fig. 6e 5.194¢—03 7.846e—04 6.62 4-7-5-1 67
Fig. 6f 7.967¢e—03 7.136e—04 11.16 4-7-2-1 48
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Conclusions

This paper presents a new hybrid approach for structural opti-
mization of the feedforward, backpropagation neural models. The
method combines into one framework a bagging bootstrap tech-
nique, which estimates neural network generalizationperformance,
and a stochastic, nongradient search strategy, such as a GA, which
uses this estimate to select hidden node activation functions. A dis-
tinguished feature of our approachis that the design task is treated,
in general, as a multi-objective optimization problem. This allows
for a more direct treatment of competing design requirements. The
new method is numerically tested by tuning neural networks that
model high-lift aerodynamics of a multi-element airfoil under the
realistic constrainof a small training data set. Despite the high com-
putational costs of the bootstrap method and hindering variations
of the generalizationestimator, the method produces final solutions
that exhibit on average five to six times smaller generalization er-
ror in comparison to the two-stage, scrupulously pruned models
with uniform sets of activation functions. A comparison with fully
connected networks shows an even bigger gain in favor of the new
method. Although the retraining processes were designed to be as
difficult as possible, the best models found by this algorithm exhibit
remarkably small standard deviation of the generalization estima-
tor. These results confirm that the solutions possess unique gener-
alization qualities that are virtually impossible to find by a manual,
trial-and-error approach.

In addition, the following observations were made: 1) For small
datasets and demandingmodeling problems,bagging versionsof the
bootstraptechniquesshould be utilized to reduce estimator variance.
2) The starting point in the retraining phase should be generated
in such a way that the influence of the bootstrap testing points is
maximally eliminated from the derived models, yet the network can
still reach the desired error level.
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